
On what types of applications can clustering
be used for inferring MVC architectural
layers?

Ph.D. Dragoş Dobrean,
Professor Ph.D. Laura Dioşan

September 1, 2022

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania



Table of contents

1. Introduction & Context

2. Model View Controller (MVC)

3. Approach

4. Analysis

5. Findings & Future work

1



Introduction & Context



Introduction

• Over two-thirds of the world’s population are using smartphone
devices

• Smartphones have become our most personal device

• Average users spend around 4.2 hours each day in mobile
applications 1

1Sarah Perez, Consumers now average 4.2 hours per day in apps, up 30% from
2019, TechCrunch, April 8, 2021

2

https://techcrunch.com/2021/04/08/consumers-now-average-4-2-hours-per-day-in-apps-up-30-from-2019/
https://techcrunch.com/2021/04/08/consumers-now-average-4-2-hours-per-day-in-apps-up-30-from-2019/


Introduction

• A lot of companies were built around mobile applications
(WhatsApp, Instagram, Tinder, Snapchat)

• Mobile applications are one of the most commonly written pieces
of software nowadays

• As the technology advances, mobile applications become more
complex (audio/photo/video processing, Augmented Reality,
Machine Learning, databases)

3



Goals

• Our end-goal is to build a software architecture checker system
for mobile codebases

• Automatically inferring the software architectures from mobile
codebases is one of the cornerstones of the checker system

• Using the information from Software Development Kits (SDKs)
and Machine Learning techniques

Mobile architecture checker system in a CI/CD pipeline 2

2Dobrean, D., Automatic Examining of Software Architectures on Mobile
Applications Codebases, (IEEE International Conference on Software Maintenance
and Evolution (pp. 595-599))

4



Model View Controller (MVC)



Description

• Mobile applications run on the client-side, ergo, they should use
presentational architectural patterns which generally descend
MVC

• MVC is one of the most commonly used architectures for
developing mobile applications 3

• Model - all the business logic, data access, and mapping of the
data

• View - displays the data in different forms based on the scope of
the application and its requirements

• Controller - input logic and acting as a proxy between the View
and Model layer

3Chris Hefferman , Dragos Dobrean, Dave Vewer, Benjamin Hendricks, iOS
Developer Survey 2019-2021

5

https://iosdevsurvey.com/2020/
https://iosdevsurvey.com/2020/


Approach



Clustering ARchitecture Layers (CARL) 4

• A novel approach for automatically detecting architectural layers

• Unsupervised Machine Learning method

• Leverages information from both the codebase and the SDKs

4Dobrean, D., Dioşan, L. Detecting Model View Controller Architectural Layers
using Clustering in Mobile Codebases, (Proceedings of the 15th International
Conference on Software Technologies (2020), pages 196-203)

6



Clustering ARchitecture Layers (CARL)

Challenges

• Architecture detection by using Machine Learning algorithms

• Clustering method for identifying layers of software components
and quick processing

• Assigning semantics to the identified clusters

7



Clustering ARchitecture Layers (CARL)

CARL system phases

• Unsupervised method for detecting architectural layers

• Autonomous – no developer involvement needed

• Paves the way for custom architectures support

• Uses hierarchical algorithms for clustering

8



CARL – Feature selection – approaches

• F1 - Number of dependencies – how many dependencies does
a component have with all the other components

• F2 - Presence of dependencies – if a dependency between two
codebase elements is present

• F3 - Name distance – F2 + distances between the name of the
components

• F4 - Keywords presence – F3 + presence of a keyword (view,
controller)

• F5 - SDK Inheritance – F4 + SDK inheritance of the component

9



Analysis



Analysis – Data

Application Blank Comment Code #comp Class
Demo 785 424 3364 27 Small
Game 839 331 2113 37 Small
Stock 1539 751 5502 96 Medium
Education 1868 922 4764 105 Medium
Wikipedia 6933 1473 35640 253 Medium
Trust 4772 3809 23919 403 Large
E-Commerce 7861 3169 20525 433 Large
Firefox 23392 18648 100111 514 Large

Codebases split by number of components

10



Analysis – Feature selection

Model View Controller Accu-
Precision Recall Precision Recall Precision Recall racy

CARL-F1 0.50 0.01 0.22 1,00 1,00 0.10 0.24
CARL-F2 0.49 0.93 0.17 0.09 1,00 0.08 0.46
CARL-F3 0.62 0.75 0.33 0.53 0.65 0.22 0.52
CARL-F4 0.70 0.93 0.84 0.83 0.99 0.56 0.78
CARL-F5 0.76 0.99 1,00 1,00 0.99 0.57 0.85

Analysis of all the five versions of CARL on the benchmark application

11



Analysis - Detection quality

Codebase
Model View Controller Accu-

Precision Recall Precision Recall Precision Recall racy
Firefox 0.92 0.95 1.00 0.99 0.73 0.64 0.91
Wikipedia 0.78 0.83 1.00 0.54 0.83 0.98 0.82
Trust 0.79 0.69 0.38 0.66 0.62 0.57 0.66
E-comm 0.76 0.99 1.00 1.00 0.99 0.57 0.85
Game 0.87 0.95 0.75 1.00 1.00 0.75 0.88
Stock 0.64 0.98 1.00 0.59 1.00 0.61 0.76
Education 0.55 0.98 0.50 0.05 0.95 0.44 0.62
Demo 0.96 1.00 1.00 0.75 1.00 1.00 0.96

CARL-F5 results in terms of detection quality

12



Analysis - ML Metrics

Approach Size
Model View Controller Average

Accuracy Homog. Compl.
Precision Recall Precision Recall Precision Recall Precision Recall

CARL F5 Small 0.87 0.95 0.75 1.00 1.00 0.75 0.87 0.90 0.93 0.77 0.84
CARL F5 Medium 0.66 0.93 0.83 0.39 0.93 0.68 0.81 0.67 0.74 0.35 0.45
CARL F5 Large 0.82 0.88 0.79 0.88 0.78 0.59 0.80 0.78 0.81 0.48 0.51

Average (on applications classes) precision, recall, accuracy, Homogeneity,
and Completeness of the analyzed codebases against the ground truth. Note
that precision and recall metrics are computed both at layer-level (columns
Model, View and Controller ) and at codebase-level, as a mean over all three
layers (column Average).

13



Analysis - Clustering

Approach Size
Adjusted

Rand Index
Mean

Silhouette coefficient
Davies

Bouldin index
CARL F5 Small 0.80 0.92 0.18
CARL F5 Medium 0.33 0.78 0.37
CARL F5 Large 0.50 0.76 0.40

Average (on applications classes) Adjusted Rand Index, Mean Silhouette
Coefficient, and Davies Bouldin Index.

14



Findings & Future work



Threats to validity

• Feature selection based on a trial and error approach

• iOS platform, Swift language

• MVC only

• More experiments should be run

15



Conclusions

• Increased the confidence in applying AI to the field of software
engineering on mobile platforms

• CARL works well in small and large-sized codebases that
respect best practices

• Our method is unsupervised, requires no prior knowledge

• Paves the way for automatic architectural detection of mobile
codebases

16



Further work

• More experiments on different-sized codebases

• Study feature detection algorithms

• Study approaches for functional programming

17



Questions

17


	Introduction & Context
	Model View Controller (MVC)
	Approach
	Analysis
	Findings & Future work

