Intelligent methods for inferring software
architectures from mobile applications
codebases

Ph.D. Student: Dragos Dobrean,
Supervisor: Professor Ph.D. Laura Diosan

November 18, 2021

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania
MECO research group - Applied Computational Intelligence Research Institute

Table of contents

1. Introduction & Context

2. Proposed approaches
3. Analysis

4. Conclusions & Further work

Introduction & Context

Introduction

« Over two-thirds of the world’s population are using smartphone
devices

» Smartphones have become our most personal device

» Average users spend around 4.2 hours each day in mobile
applications '

"Sarah Perez, Consumers now average 4.2 hours per day in apps, up 30% from
2019, TechCrunch, April 8, 2021

https://techcrunch.com/2021/04/08/consumers-now-average-4-2-hours-per-day-in-apps-up-30-from-2019/
https://techcrunch.com/2021/04/08/consumers-now-average-4-2-hours-per-day-in-apps-up-30-from-2019/

Introduction

A lot of companies were built around mobile applications
(WhatsApp, Instagram, Tinder, Snapchat)

» Mobile applications are one of the most commonly written pieces
of software nowadays

« As the technology advances, mobile applications become more
complex (audio/photo/video processing, Augmented Reality,
Machine Learning, databases)

What is software architecture?

"Architecture is concerned with the selection of architectural
elements, their interactions, and the constraints on those elements
and their interactions necessary to provide a framework in which to
satisfy the requirements and serve as a basis for the design."?

2Dewayne E Perry and Alexander L Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software engineering notes, 17(4):4052, 1992.

* Mobile applications usually start as Minimum Viable Projects
projects

« If they evolve into more complex products, most of the time
don’t have an architectural pattern in place

» They are developed by different people (different backgrounds,
skills)

Software architecture in mobile projects

* 100% of developers and 80% of students encounter architectural
issues, 70% of developers on a monthly basis 2

» The right architecture for the application based on the functional
requirements and the roadmap of the application can have a
strong impact on the overall cost of the project

Enables extensibility, and flexibility to adapt to new
technologies, and a higher number of devices on which the
application can run on

Security and scalability of the application as well as the ability
to easily provide new and interactive user interfaces and
experiences

3Dobrean, D., Diosan, L. Importance of software architectures in mobile projects,
SACI, May 19-21 2021, to be published in IEEE

» Our end-goal is to build a software architecture checker system
for mobile codebases

+ Automatically inferring the software architectures from mobile
codebases is one of the cornerstones of the checker system

* Using the information from Software Development Kits (SDKSs)
and Machine Learning techniques

Detected architectural issues:
Analyse the ne@

- h— Commits code =] No architectural issues found

Developer Productiof
P D Server

Mobile architecture checker system in a CI/CD pipeline *

4Dobrean, D., Automatic Examining of Software Architectures on Mobile
Applications Codebases, (IEEE International Conference on Software Maintenance
and Evolution (pp. 595-599)) (ISI, categ. A, 8 points, IEEE indexed)

Model View Controller

» Mobile applications run on the client-side, ergo, they should use
presentational architectural patterns which generally descend
MvcC

* MVC is one of the most commonly used architectures for
developing mobile applications °

* Model - all the business logic, data access, and mapping of the
data

+ View - displays the data in different forms based on the scope of
the application and its requirements

+ Controller - input logic and acting as a proxy between the View
and Model layer

5Chris Hefferman , Dragos Dobrean, Dave Vewer, Benjamin Hendricks, iOS
Developer Survey 2019-2021

https://iosdevsurvey.com/2020/
https://iosdevsurvey.com/2020/

Classic Model View Controller

user action —————> CONTROLLER

manipulates

[¢——updates
VIEW MODEL
i

Classic Model View Controller architectural overview

notifies ———————>| CONTROLLER

|

VIEW p MODEL

updates

Apple’s Model-View-Controller architectural overview

Common issues

« Complexity — the components might become bloated with code,
if not split correctly (massive view controllers) ©

* Misunderstandings — different flavors of MVC from various
platforms (Web, Dekstop) with different allowed dependencies ©

» Design issues — design pattern issues, the violation of SOLID
principles, Co-change Coupling, Smells, etc. ©

6Dobrean, D., Diosan, L., Model View Controller in iOS mobile applications
development, Proc. of the 31st International Conference on Software Engineering
Knowledge Engineering, 2019, 547-552. (ISI, categ. B, 4 points, SCOPUS indexed)

Scientific problem

In this work, we focus on finding a way of automatically inferring
architectural layers from mobile codebases.

« A={ay,a,...,an} where g;, i € {1,2,...,n} denotes a
component

» The purpose of all our proposals is to find a way for splitting the
codebase into architectural layers

* Architectural layer — a partition P of the components
P={P,Ps,....Pp}inA

* In the case of MVC, P = { P, P2, P3}, Py represents the Model
layer, P the View layer, and P5 the Controller layer.

» Each component a; (i € {1,2, ..., n}) could be represented by
one or more features or characteristics —
F(a) = [F],FP, ., FI.

Challenges

distinct domains

fast-paced environment

developer mistakes

external libraries

legacy code

different sized applications/codebases
team changes

different variations of MVC

© O N O~

no set of iOS benchmark applications

Proposed approaches

Deterministic approach

mobile ArchCheckSys (mACS) ’

» Uses information from the mobile SDKs and the codebase for
inferring architectural layers

 Simple formalization of the architectural rules
+ Automated workflow

"Dobrean, D., Diosan, L., An analysis system for mobile applications MVC
software architectures, (Proceedings of the 14th International Conference on
Software Technologies, pages 178-185) (ISI, categ. B, 4 points, Web Of Science,
SCOPUS indexed)

mobile ArchCheckSys (mACS)

Challenges
+ Architecture detection by using only the information obtained
from the mobile SDKs

+ A method able of identifying layers of software components that
can not be inferred from the SDKs

mobile ArchCheckSys (mACS)
Q_.< Detection of H Extraction Categorisation
entities (Graph (assigning
construction) nodes to
layers

mACS workflow

* Analysis MVC architectures

 Leverages SDK information for architecture extraction
» Automated process

» Language and platform agnostic

MmACS — Detection

« Static analysis
» Components
+ Classes
 Structs
* Protocols
* Enums
» Public and private properties
» Public and private class and instance methods
+ The output of this phase is stored in a structured file
(JSON/XML)

» The Abstract Syntax Tree (AST) can be used for generating the
file

mACS — Extraction

It creates a dependency graph based on the information in that file,
each node contains the following information:

* Name

» Type

* Inherited type

* Instance and class variables (name and type)

* Instance and class methods (together with parameters names
and types)

e Path

mACS - Extraction - example

ViewController Button
-closeButton: Button L targetViewController: ViewController
-saveButton: Button setTile()
addButtons() [
saveltems()
refreshPage()

Example of a UML diagram for codebase components.

closeButton

ViewController targetViewController

saveButton

A directed graph showcasing the edges for the example UML diagram.

mACS - Categorisation

Heuristics

Controller ={n|predx(n, SDK'sController) = True,
where X € {instanceOf, inheritance} }

View ={n|predx(n, SDK'sView) = True,
where X € {instanceOf, inheritance} }

Model = Components — View — Controller (3)

mACS - Categorisation - example

ApplicationCoordinator

l

AuthenticationCoordinator BookingC:

||
| |

LoginViewController RegisterViewConlroller OnboardingViewController MapViewController NewBookingViewController

Coordinating controllers flows

20

mACS - Categorisation

Coordinating controllers

Coordinators = {n|3v € n.properties and ¢ € Controller
such as predipstanceor(V, €) = True or 3m € n.methods (4)

and ¢ € Controller such as predysing(m, ¢) = True}

Controller = Controller U Coordinators (5)

21

Non-deterministic approach

Clustering ARchitecture Layers (CARL) 8

» A novel approach for automatically detecting architectural layers
» Unsupervised Machine Learning method
» Leverages information from both the codebase and the SDKs

8Dobrean, D., Diosan, L. Detecting Model View Controller Architectural Layers
using Clustering in Mobile Codebases, (Proceedings of the 15th International
Conference on Software Technologies (2020), pages 196-203) (ISI, categ. B, 4 points,
Web Of Science, SCOPUS indexed)

22

Clustering ARchitecture Layers (CARL)

Challenges

+ Architecture detection by using Machine Learning algorithms

« Clustering method for identifying layers of software components
and quick processing

+ Assigning semantics to the identified clusters

23

Clustering ARchitecture Layers (CARL)
: 1 ’ 1 Applying ’ 1 Assign ’
Detection clustering clusters to ©
of entities over the architectural
entities layers

CARL system phases

» Unsupervised method for detecting architectural layers
+ Autonomous — no developer involvement needed

» Paves the way for custom architectures support

 Uses hierarchical algorithms for clustering

» The detection step is identical to the one from mACS

24

CARL - Pre-processing and feature extraction

The first phase from the clusterization process

Component features

* name of the component

« type (class, struct, protocol, extension)

* inherited types

+ path of the component

- all public/private static and non-static methods and properties

Other features

+ SDK elements involvement

» number of dependencies between the components
 presence of dependencies between components

* name similarities

25

CARL - Clustering

Mechanism

 connectivity bases clustering (Agglomerative Clustering)
* hierarchical, bottom-up
 Euclidean distance

Output

+ 3 clusters (Model, View, Controller)

26

CARL - Assigning responsibilities to the layers

- focuses on MVC
* leverages information from the SDK

* needs to be revisited in case of custom architectures
(architecture-specific heuristics)

27

Hybrid approach

Hybrid Detection (HyDe) °

* Unsupervised — there is no prior knowledge needed before
analyzing a codebase

« Autonomous — no developer involvement needed after the
process is started

» Two-step process — the deterministic step (mACS) and
non-deterministic step (CARL)

9Dobrean, D., Diosan, L. A hybrid approach to MVC architectural layers analysis,
(Proceedings of 16th International Conference on Evaluation of Novel Approaches to
Software Engineering (2021)) (ISI, categ. B, 4 points, Web Of Science, SCOPUS
indexed), earned Best Student Paper Award

28

Hybrid Detection (HyDe)

Challenges

+ Architecture detection using a combined approach (deterministic
+ non-deterministic)

+ A clustering process that works while combined with the
information obtained from the deterministic process

29

Hybrid Detection (HyDe)

PREPROCESSING
MaCS EXTRACTION &
CATEGORIZATION

MODEL ={aj1, aj2, ..}

CARL FEATURE DETECTION &
CLUSTERING
@ MODEL ={all, al2, ...} CTRL = {am1, am2, ...}

Overview of the HyDe workflow.

30

HyDe — Deterministic step (mACS)

Detection & Extraction

» The topological structure of the codebase is created
* Nodes — components

+ Links between nodes — dependencies

 This step is identical to the one from mACS

Categorization

» The codebase is distributed into 3 architectural layers (Model,
View, Controller)

+ Uses the information obtained from the SDK

+ A set of heuristics is applied

31

HyDe — Non-deterministic step (CARL)

HyDe is applying the clustering process only to the Model and
Controller layer obtained from the deterministic approach.

Feature extraction

* Inclusion in the Controller layer

+ Usage other Controller elements

+ Distance between components names

* Number of common properties and methods

Clusterization

» Agglomerative Clustering
+ 2 output clusters (Model, Controller)

32

Approaches overview

L) Information Analysis Granularity Language PIatm
PP Structural | Lexical SDK | Static | Heuristics Cl i Package | Module Class
belle2013layered Vv v]- - % [- % - [- No not mobile
belle2016combining | v v - v - v - - No not mobile
belle2014recovering | v’ v]- - v [- v - [- [No not mobile
el2012reconstructing | v - - v v - - No not mobile
Yes (Java,
laval20130zone v = = = v = v = = C#, C++ not mobile
and Smalltalk)

muller1993reverse v = > v = = = v = ;eC?B(CCJL) not mobile
rathee2017software | v v [- - - [v - - [v [Yes (Java) not mobile
sangal2005using v - v - - - - v Yes (Java) not mobile
sarkar2009discovery | v - [- - [v - v [- [Yes (C/C++) | not mobile
scanniello2010using | v v - v v Yes (Java) not mobile
schmidt2012auto v - [- v [- v [- [Yes (Java) not mobile
zapalowski2014rev v - ' - - v Yes (Java) not mobile

015unve v v [v - [- - [v [Yes (Java) Android

i Yes a

daoudi2019explo v v - - v - - - v (JavalKotlin) Android

mACS v - ‘ 7 |- v - - ‘ v ‘ No platform

agnostic

CARL v v v |- - v - - v No platform

agnostic

HyDe v v ‘ 7 |- v ‘ v . . ‘ v ‘ No platiorm

agnostic

10

Comparison of the detection mechanisms with other approaches.

"ONumerical comparison is not possible as most of the approaches are not
mobile-related, or they don’t give implementation / testing details 33

Analysis

Analysis — Data

Application | Blank | Comment | Code | #comp | Class
Demo 785 424 3364 27 | Small
Game 839 331 2113 37 | Small
Stock 1539 751 5502 96 | Medium
Education 1868 922 4764 105 | Medium
Wikipedia 6933 1473 | 35640 253 | Medium
Trust 4772 3809 | 23919 403 | Large
E-Commerce | 7861 3169 | 20525 433 | Large
Firefox 23392 18648 | 100111 514 Large

Codebases split by number of components

34

Analysis — Metrics

Supervised Machine Learning

+ Precision

* Recall

» Accuracy

* Homogeneity
+ Completeness

Unsupervised Machine Learning

+ Adjusted Rand Index
« Mean Silhouette Coefficient
« Davies Bouldin Index

35

Analysis — Supervised Machine Learning metrics

q Model % View % Controller % Average %

Approach Size = Recall = Recall fai Recall = g Recall Accuracy % | Homog. | Compl.
SimpleCateg. | small__| 100 100 | 100 [100|100 100 | 100 [100 | 100 100 100
CoordCateg. | small | 100 100 [100 100 [100 100 | 100 100 100 100 100
CARL small__[87 95 75 [100 100 75 87 [90 T93 [77 84
HyDe small__| 93 89 100 100 |63 80 85 89 88 65 61
SimpleCateg. | medium | 64 100 [100 [72 99 57 88 [76 |76 [47 61
CoordCateg. | medium | 80 88 100 72 88 98 89 86 89 51 56
CARL medium | 66 93 83 [39 9 68 81 [67 74 [35 45
HyDe medium | 82 82 100 72 81 93 88 82 84 55 59
SimpleCateg. | large | 83 99 100 [88 99 54 94 [80 [e&7 [66 76
CoordCateg. | large 92 81 100 88 63 87 85 85 85 64 61
CARL large | 82 88 79 [88 78 59 80 [78 T8t [48 51
HyDe large | 94 82 100 86 65 88 86 85 86 60 57

Average (on complexity classes) precision, recall, accuracy, Homogeneity,
and Completeness of the analyzed codebases against the ground truth for all
detection methods: mACS, CARL and HyDe.

Note: SimpleCateg. & CoordCateg. refer to the two mACS variations —
without coordinators controllers detections respectively with coordinating
controllers.

36

Analysis — Unsupervised Machine Learning metrics

Approach Size Adjusted Mean Davies
Rand Index | Silhouette coefficient | Bouldin index

CARL small 80 92 18

HyDe small 61 69 87
| CARL | medium | 33 78 37

HyDe medium | 57 76 36
[CARL [large |50 76 40

HyDe large 57 65 57

Adjusted Rand Index, Mean Silhouette Coefficient, and Davies Bouldin Index
for the approaches which use clustering algorithms (CARL, HyDe).

37

Portability — Android and new iOS SDK

Codebase Approach LICH WLTEE ST Accuracy %

PP Precision = Recall Precision | Recall Precision Recall Yy
. SimpleCateg. 50 100 100 100 100 40 70
[e-GitlElal CoordCateg. 75 100 100 100 100 80 90
. SimpleCateg. 50 100 100 100 100 40 70
10S-new SDK | prmemyomremy 100 100 100 100 100 100 100
Android SimpleCateg. 100 100 100 100 100 100 100
CoordCateg. 100 100 100 100 100 100 100

The effectiveness of the categorization process in terms of Accuracy,
Precision, and Recall for the iOS/Android demo apps.

38

Portability — macOS

Model % View % Controller % o
CECATED || ATy Precision = Recall Precision Recall Precision Recall SccLracyie
Industrial SimpleCateg. 62 100 100 100 100 39 78
Tracking CoordCateg. 96 100 100 95 96 96 96
Sustainable = SimpleCateg. 58 100 100 100 100 68 82
Lifestyle CoordCateg. 91 100 100 100 100 96 97

The effectiveness of the categorization process in terms of Accuracy,
Precision, and Recall for the macOS apps.

39

Conclusions & Further work

SWOT analysis

+ Strengths

» Good performance, use the information from SDKs, highly flexible
to change (new platforms/architectures -HyDe)

+ Weaknesses
» The performance could be further improved, might need
enhancements for more complex architectures, the output of the
system can be improved
» Opportunities
+ Take advantage of other more complex Al/ML algorithms, analysis
of the body of the functions, build tools for education and industry
* Threats

» More experiments should be run to strengthen our findings,
different platforms and languages might uncover issues or new
corner cases

40

Contributions

1. A deep examination of the context

1.1 Building a better understanding of the importance of software
architecture among students, instructors, and mobile developers by
analyzing their answers to function-specific questionnaires [1]

1.2 Conducting an overview and comparison of the software
architectures used in building mobile applications [2]

1.3 Analysis of the most common architectural issues that are present
at each architectural layer found in the codebases of mobile
applications that implement the MVC architectural pattern [3]

2. Definition and formalization of the problem

2.1 The formalization of the problem of automatically inferring
architectural layers from mobile codebases

2.2 Constructing the benchmarks (ground-truth for the codebases) for
testing and validating our approaches on both open-source and
closed-source applications of different size

41

Contributions

4. Different approaches for solving the problem of
automatically inferring architectural layers from mobile
codebases
4.1 Three different approaches for inferring software architecture layers

from codebases that use SDKs for building their User Interfaces
(UI) [4], [51, 6], [7], [8]

5. Assessments

5.1 A comparison of the three approaches on a set of benchmark
mobile applications [9], [10], [6], [7], [8]

5.2 Evaluation of the proposed approaches from the perspective of
ground-truth, intrinsic (without ground-truth), and extrinsic through
developers’ interviews [6], [7], [8]

5.3 Evaluation of the portability of our approaches on different
platforms

5.4 Conducting a developer survey [11]

42

Further work - Short term

» More experiments should be run for all the presented approaches

* In the case of CARL and HyDe, we plan to study feature
detection algorithms

* Running CARL and HyDe on different platforms

» The empirical evaluation should also be expanded to include
more developers

» The portability of our solutions should be better studied
« Study approaches for functional programming

43

Further work - Long term

 Fully develop the software architecture check tool

+ Since the results for non-mobile platforms also look promising,
we plan to expand the checker tool to more platforms

* We would like to also integrate our tool into open-source IDEs
such as Eclipse

« Last but not least, we would like to introduce new features in the
architecture checker tool, such as recommending an
architectural change or analyzing the evolution of projects

44

Questions

References i

@ D. Dobrean and L. Diosan, “Importance of software architectures in mobile
projects.,” in Proceedings of the IEEE 15th International Symposium on Applied
Computational Intelligence and Informatics, 2021.

@ D. Dobrean and L. Diosan, “A comparative study of software architectures in
mobile applications.,” Studia Universitatis Babes-Bolyai, Informatica, vol. 64,
no. 2, 2019.

@ D. Dobrean and L. Diosan, “Model View Controller in ios mobile applications

development,” pp. 547-552, KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2019.

@ D. Dobrean, “Automatic examining of software architectures on mobile
applications codebases,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 595-599, IEEE, 2019.

@ D. Dobrean and L. Diosan, “Avenues for mining the model-view-controller
software architecture on mobile applications,” Soft Computing — submitted.

@ D. Dobrean and L. Diosan, “An analysis system for mobile applications MVC
software architectures,” pp. 178—185, INSTICC, SciTePress, 2019.

45

References i

B
[
B

D. Dobrean and L. Diosan, “Detecting model view controller architectural layers
using clustering in mobile codebases,” pp. 196—203, INSTICC, 2020.

D. Dobrean and L. Diosan, “A hybrid approach to mvc architectural layers
analysis,” 2021.

D. Dobrean and L. Diosan, “Comparing automatic approaches for mvc
architecture detection in ios codebases,” Automated Software Engineering —
submitted.

D. Dobrean and L. Diosan, “On what types of applications can clustering be used
for inferring mvc architectural layers?,” The 24th International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems — submitted.
C. H. D. D. Dave Vewer, Benjamin Hendricks, “ios developer survey.” link,
2019-2020.

46

https://iosdevsurvey.com/

	Introduction & Context
	Proposed approaches
	Analysis
	Conclusions & Further work

