An analysis system for mobile applications
MVC software architectures

Dragos Dobrean, Laura Diosan
July 20, 2019

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania

Table of contents

1. Introduction

2. Software Architecture Checker System
3. Analysis

4. Conclusions

5. Further work

Introduction

Introduction

+ Many companies built around their mobile applications
(Instagram, Uber, Whatsapp, etc.)

* Projects need to be extensible, flexible, and to allow multiple
people to work on them

« New software and hardware enhancements

Introduction

 Help the inexperienced developers write better code

 Validate weather or not some of the constraints of the
architecture have been violated as early as possible in the
development phase

+ Insightful information for Management

Software Architecture Checker
System

Software Architecture Checker System

Detection of Extraction Categorisation Analysis
entities (Graph (assigning (against
construction) nodes to defined

layers architecture

Figure 1: Software architecture checker system phases

» Works on Swift codebases

* Analysis MVC architectures

 Leverages SDK information for architecture extraction
» Automated process

Model View Controller

notifies ———————>| CONTROLLER

|

VIEW p MODEL

updates

Figure 2: Apple’s Model-View-Controller architectural overview

» One of the most used presentational patterns

 Heavily used on mobile platforms (iOS, Android, Windows
Mobile)

» Separates the codebase in 3 layers Model, View and Controller
« "Father" of other architectural patterns — MVP, MVVM

» Components

» Classes
» Structs

* Protocols
* Enums

» Public and private properties
» Public and private class and instance methods

It creates a dependency graph based on the information in that file,
each node contains the following information:

* Name

» Type

* Inherited type

* Instance and class variables (name and type)

* Instance and class methods (together with parameters names
and types)

e Path

Categorisation

Heuristics

Controller ={n|predx(n, SDK'sController) = True,
where X € {instanceOf, inheritance} }

View ={n|predx(n, SDK'sView) = True,
where X € {instanceOf, inheritance} }

Model = Components — View — Controller (3)

Categorisation

ApplicationCoordinator

l

AuthenticationCoordinator

||

BookingC

LoginViewController

RegisterViewConlroller

OnboardingViewController

MapViewController

NewBookingViewController

Figure 3: Coordinating controllers flows

Categorisation

Coordinating controllers

Coordinators = {n|3v € n.properties and ¢ € Controller
such as predipstanceor(V, €) = True or 3m € n.methods (4)

and ¢ € Controller such as predysing(m, ¢) = True}

Controller = Controller U Coordinators (5)

Analysis

Research questions
* RQ1 - How effective is the proposed categorisation method
compared to manual inspections?

+ RQ2 - What is the topological structure of mobile codebases
using the proposed approach?

+ RQ3 - Do mobile codebases respect the architectural rules?

Application | Blank | Comment | Code Source
Firefox 23392 18648 | 100111 | open-source
Wikipedia 6933 1473 | 35640 | open-source
Trust 4772 3809 | 23919 | open-source
E-Commerce 7861 3169 | 20525 | private
Game 839 331 2113 | private

Table 1: Codebases size

Methodology

« Controller: LSS = {/ = (vc, cc)|ve € ViewControllers A cc €
CoordinatingControllers} = () meaning that ViewControllers
should not depend on other Coordinator controllers

* View:

LOther — {| = (v, 0)|v € View A (o € Controller v o € Model)} =)
meaning that all components in the View layer should only
depend on components within the same layer

* Model:

LOher — {I = (m, 0)|m € ModelA(o € Controllervo € View)} = {
meaning that all components in the Model layer should only
depend on components within the same layer

Approaches

+ MVC without Coordinating Controllers (SimpleCateg)
« MVC with Coordinating Controllers (CoordCateg)

Analysis - SimpleCateg

Layers

Hy Controllers <— CategorisationVCs(Comps.)
H> Views + CategorisationViews(Comps. \ Controllers)
Hs Models <— Comps. \ (Controllers U Views)

Dependencies rules

Ry L%’;’S = () — all View components depend only on other View

components

Ro L$ihers — () — all Model components depend only on other Model
components

Analysis - CoordCateg

Layers

H. Controllers <— CategorisationVCsAndCCs(Comps.)
H, Views < CategorisationViews(Comps. \ Controllers)
Hs Models <— Comps. \ (Controllers U Views)

Dependencies rules

Ry L$hers — () — all View components depend only on other View

components

Ro L{hers — () — all Model components depend only on other Model
components

Rs LGES = () —all ViewController components should not depend on
Coordinator components

Evaluation

RQ1 - How effective is the proposed categorisation method
compared to manual inspections?
« SimpleCateg - average accuracy of 89.6%
+ CoordCateg - average accuracy of 86.2%
+ Codebases using coordinators scored better than the others
* 100% accuracy on the simplest codebase

Evaluation

800

700 m Controller

. Model
600 W View

2

500 -)1 1 l
2

5
400
471/160

329/154
167 /80
194 /52
133 /44
100

E

Firefox Wikipedia Trust E_Commerce Game

Figure 4: RQ2 - Topological structure of mobile codebases using the
proposed approach

Evaluation

RQ3 - Do mobile codebases respect the architectural rules?
* R; and R, violated in both approaches
* Rj violated in 3 of the 5 analysed codebases
* Model layer is the most problematic

Evaluation

Threats to validity

« Internal validity - mismatches between the purpose given by
developer and the one obtained by inference, Swift only
codebases

 External validity - the study was focused on MVC

+ Conclusion validity - should be tested on more applications to
strengthen our findings

20

Conclusions

Conclusions

* Issues come from bad implementation
» No architecture can enforce stop writing bad code

+ Software Architecture Checker system adds another layer of
architectural trust

21

Conclusions

+ SDK information can be successfully used for inferring the
architecture of a codebase

» Provides useful information for management and developers

+ Adds another layer of architectural trust by integrating it in a
CI/CD pipeline

+ Can be generalised to other platforms where the products rely on
an SDK

22

Further work

» Use Al & ML algorithms for improving the categorisation process
* Integrate the system into real CI/CD pipelines

23

Questions?

	Introduction
	Software Architecture Checker System
	Analysis
	Conclusions
	Further work

