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Introduction



Introduction

• Many companies built around their mobile applications
(Instagram, Uber, Whatsapp, etc.)

• Projects need to be extensible, flexible, and to allow multiple
people to work on them

• New software and hardware enhancements
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Introduction

• Help the inexperienced developers write better code

• Validate weather or not some of the constraints of the
architecture have been violated as early as possible in the
development phase

• Insightful information for Management
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Software Architecture Checker
System



Software Architecture Checker System

Figure 1: Software architecture checker system phases

• Works on Swift codebases

• Analysis MVC architectures

• Leverages SDK information for architecture extraction

• Automated process
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Model View Controller

Figure 2: Apple’s Model-View-Controller architectural overview

• One of the most used presentational patterns

• Heavily used on mobile platforms (iOS, Android, Windows
Mobile)

• Separates the codebase in 3 layers Model, View and Controller

• "Father" of other architectural patterns — MVP, MVVM
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Detection

• Components
• Classes
• Structs
• Protocols
• Enums

• Public and private properties

• Public and private class and instance methods
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Extraction

It creates a dependency graph based on the information in that file,
each node contains the following information:

• Name

• Type

• Inherited type

• Instance and class variables (name and type)

• Instance and class methods (together with parameters names
and types)

• Path
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Categorisation

Heuristics

Controller ={n|predX (n,SDK ′sController) = True,

where X ∈ {instanceOf , inheritance}}
(1)

View ={n|predX (n,SDK ′sView) = True,

where X ∈ {instanceOf , inheritance}}
(2)

Model = Components − View − Controller (3)
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Categorisation

Figure 3: Coordinating controllers flows
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Categorisation

Coordinating controllers

Coordinators = {n|∃v ∈ n.properties and c ∈ Controller

such as predinstanceOf (v , c) = True or ∃m ∈ n.methods

and c ∈ Controller such as predusing(m, c) = True}
(4)

Controller = Controller ∪ Coordinators (5)
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Analysis



Questions

Research questions

• RQ1 - How effective is the proposed categorisation method
compared to manual inspections?

• RQ2 - What is the topological structure of mobile codebases
using the proposed approach?

• RQ3 - Do mobile codebases respect the architectural rules?
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Codebases

Application Blank Comment Code Source
Firefox 23392 18648 100111 open-source
Wikipedia 6933 1473 35640 open-source
Trust 4772 3809 23919 open-source
E-Commerce 7861 3169 20525 private
Game 839 331 2113 private

Table 1: Codebases size

12



Analysis

Methodology

• Controller: LCC
VC = {l = (vc, cc)|vc ∈ ViewControllers ∧ cc ∈

CoordinatingControllers} = ∅ meaning that ViewControllers
should not depend on other Coordinator controllers

• View:
LOther

View = {l = (v ,o)|v ∈ View ∧ (o ∈ Controller ∨ o ∈ Model)} = ∅
meaning that all components in the View layer should only
depend on components within the same layer

• Model:
LOther

Model = {l = (m,o)|m ∈ Model∧(o ∈ Controller∨o ∈ View)} = ∅
meaning that all components in the Model layer should only
depend on components within the same layer
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Analysis

Approaches

• MVC without Coordinating Controllers (SimpleCateg)

• MVC with Coordinating Controllers (CoordCateg)

14



Analysis - SimpleCateg

Layers

H1 Controllers ← CategorisationVCs(Comps.)

H2 Views ← CategorisationViews(Comps. \ Controllers)

H3 Models ← Comps. \ (Controllers ∪ Views)

Dependencies rules

R1 LOthers
View = ∅ – all View components depend only on other View

components

R2 LOthers
Model = ∅ – all Model components depend only on other Model

components
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Analysis - CoordCateg

Layers

H4 Controllers ← CategorisationVCsAndCCs(Comps.)

H2 Views ← CategorisationViews(Comps. \ Controllers)

H3 Models ← Comps. \ (Controllers ∪ Views)

Dependencies rules

R1 LOthers
View = ∅ – all View components depend only on other View

components

R2 LOthers
Model = ∅ – all Model components depend only on other Model

components

R3 LCCs
VCs = ∅ – all ViewController components should not depend on

Coordinator components
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Evaluation

RQ1 - How effective is the proposed categorisation method
compared to manual inspections?

• SimpleCateg - average accuracy of 89.6%

• CoordCateg - average accuracy of 86.2%

• Codebases using coordinators scored better than the others

• 100% accuracy on the simplest codebase
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Evaluation

Figure 4: RQ2 - Topological structure of mobile codebases using the
proposed approach
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Evaluation

RQ3 - Do mobile codebases respect the architectural rules?

• R1 and R2 violated in both approaches

• R3 violated in 3 of the 5 analysed codebases

• Model layer is the most problematic
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Evaluation

Threats to validity

• Internal validity - mismatches between the purpose given by
developer and the one obtained by inference, Swift only
codebases

• External validity - the study was focused on MVC

• Conclusion validity - should be tested on more applications to
strengthen our findings
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Conclusions

• Issues come from bad implementation

• No architecture can enforce stop writing bad code

• Software Architecture Checker system adds another layer of
architectural trust
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Conclusions

• SDK information can be successfully used for inferring the
architecture of a codebase

• Provides useful information for management and developers

• Adds another layer of architectural trust by integrating it in a
CI/CD pipeline

• Can be generalised to other platforms where the products rely on
an SDK
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Further work

• Use AI & ML algorithms for improving the categorisation process

• Integrate the system into real CI/CD pipelines
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Questions?
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