
An analysis system for mobile applications
MVC software architectures

Dragoş Dobrean, Laura Dioşan

July 20, 2019

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania



Table of contents

1. Introduction

2. Software Architecture Checker System

3. Analysis

4. Conclusions

5. Further work

1



Introduction



Introduction

• Many companies built around their mobile applications
(Instagram, Uber, Whatsapp, etc.)

• Projects need to be extensible, flexible, and to allow multiple
people to work on them

• New software and hardware enhancements

2



Introduction

• Help the inexperienced developers write better code

• Validate weather or not some of the constraints of the
architecture have been violated as early as possible in the
development phase

• Insightful information for Management

3



Software Architecture Checker
System



Software Architecture Checker System

Figure 1: Software architecture checker system phases

• Works on Swift codebases

• Analysis MVC architectures

• Leverages SDK information for architecture extraction

• Automated process

4



Model View Controller

Figure 2: Apple’s Model-View-Controller architectural overview

• One of the most used presentational patterns

• Heavily used on mobile platforms (iOS, Android, Windows
Mobile)

• Separates the codebase in 3 layers Model, View and Controller

• "Father" of other architectural patterns — MVP, MVVM

5



Detection

• Components
• Classes
• Structs
• Protocols
• Enums

• Public and private properties

• Public and private class and instance methods

6



Extraction

It creates a dependency graph based on the information in that file,
each node contains the following information:

• Name

• Type

• Inherited type

• Instance and class variables (name and type)

• Instance and class methods (together with parameters names
and types)

• Path

7



Categorisation

Heuristics

Controller ={n|predX (n,SDK ′sController) = True,

where X ∈ {instanceOf , inheritance}}
(1)

View ={n|predX (n,SDK ′sView) = True,

where X ∈ {instanceOf , inheritance}}
(2)

Model = Components − View − Controller (3)

8



Categorisation

Figure 3: Coordinating controllers flows

9



Categorisation

Coordinating controllers

Coordinators = {n|∃v ∈ n.properties and c ∈ Controller

such as predinstanceOf (v , c) = True or ∃m ∈ n.methods

and c ∈ Controller such as predusing(m, c) = True}
(4)

Controller = Controller ∪ Coordinators (5)

10



Analysis



Questions

Research questions

• RQ1 - How effective is the proposed categorisation method
compared to manual inspections?

• RQ2 - What is the topological structure of mobile codebases
using the proposed approach?

• RQ3 - Do mobile codebases respect the architectural rules?

11



Codebases

Application Blank Comment Code Source
Firefox 23392 18648 100111 open-source
Wikipedia 6933 1473 35640 open-source
Trust 4772 3809 23919 open-source
E-Commerce 7861 3169 20525 private
Game 839 331 2113 private

Table 1: Codebases size

12



Analysis

Methodology

• Controller: LCC
VC = {l = (vc, cc)|vc ∈ ViewControllers ∧ cc ∈

CoordinatingControllers} = ∅ meaning that ViewControllers
should not depend on other Coordinator controllers

• View:
LOther

View = {l = (v ,o)|v ∈ View ∧ (o ∈ Controller ∨ o ∈ Model)} = ∅
meaning that all components in the View layer should only
depend on components within the same layer

• Model:
LOther

Model = {l = (m,o)|m ∈ Model∧(o ∈ Controller∨o ∈ View)} = ∅
meaning that all components in the Model layer should only
depend on components within the same layer

13



Analysis

Approaches

• MVC without Coordinating Controllers (SimpleCateg)

• MVC with Coordinating Controllers (CoordCateg)

14



Analysis - SimpleCateg

Layers

H1 Controllers ← CategorisationVCs(Comps.)

H2 Views ← CategorisationViews(Comps. \ Controllers)

H3 Models ← Comps. \ (Controllers ∪ Views)

Dependencies rules

R1 LOthers
View = ∅ – all View components depend only on other View

components

R2 LOthers
Model = ∅ – all Model components depend only on other Model

components

15



Analysis - CoordCateg

Layers

H4 Controllers ← CategorisationVCsAndCCs(Comps.)

H2 Views ← CategorisationViews(Comps. \ Controllers)

H3 Models ← Comps. \ (Controllers ∪ Views)

Dependencies rules

R1 LOthers
View = ∅ – all View components depend only on other View

components

R2 LOthers
Model = ∅ – all Model components depend only on other Model

components

R3 LCCs
VCs = ∅ – all ViewController components should not depend on

Coordinator components

16



Evaluation

RQ1 - How effective is the proposed categorisation method
compared to manual inspections?

• SimpleCateg - average accuracy of 89.6%

• CoordCateg - average accuracy of 86.2%

• Codebases using coordinators scored better than the others

• 100% accuracy on the simplest codebase

17



Evaluation

Figure 4: RQ2 - Topological structure of mobile codebases using the
proposed approach

18



Evaluation

RQ3 - Do mobile codebases respect the architectural rules?

• R1 and R2 violated in both approaches

• R3 violated in 3 of the 5 analysed codebases

• Model layer is the most problematic

19



Evaluation

Threats to validity

• Internal validity - mismatches between the purpose given by
developer and the one obtained by inference, Swift only
codebases

• External validity - the study was focused on MVC

• Conclusion validity - should be tested on more applications to
strengthen our findings

20



Conclusions



Conclusions

• Issues come from bad implementation

• No architecture can enforce stop writing bad code

• Software Architecture Checker system adds another layer of
architectural trust

21



Conclusions

• SDK information can be successfully used for inferring the
architecture of a codebase

• Provides useful information for management and developers

• Adds another layer of architectural trust by integrating it in a
CI/CD pipeline

• Can be generalised to other platforms where the products rely on
an SDK

22



Further work



Further work

• Use AI & ML algorithms for improving the categorisation process

• Integrate the system into real CI/CD pipelines

23



Questions?

23


	Introduction
	Software Architecture Checker System
	Analysis
	Conclusions
	Further work

